Jack D. Martin

(AG Cyber-Physical Systems)
hosted by PhD Program in CS @ TU KL

"Constraint Net Design and Implementation Utilizing Affine Arithmetic Decision Diagrams and Integer Decision Diagrams"

In the design and configuration of automotive systems, system-wide dependencies exist between individual components and their respective properties and constraints. These dependencies between properties, along with their constraints, defines a Constraint Satisfaction Problem (CSP). Using a CSP, it is possible to analyze impacts of a change in one component and its property upon other properties in the system. A Constraint Net is designed around two data types, Affine Arithmetic Decision Diagrams (AADDs) and Integer Decision Diagrams (IDDs). Beginning with a model or configuration design, one allows for each element of the model to have an associated property. Properties are interrelated by dependency (mathematical) expressions. From the dependency expressions, it is possible to create a Constraint Satisfaction Problem (CSP), using one or more parsed dependency expressions as a constraint net. This talk will describe how the CSP is solved by this specific Constraint Satisfaction Algorithm (CSA). The CSA is used to check consistency of system specifications for engineering models and configuration designs. Using the CSA, it is possible to perform bi-directional evaluation, using variables, their domains, and the constraints that must be satisfied. In addition, iterative procedures refine the values of the variables.

Time: Monday, 22.02.2021, 15:45

Termin als iCAL Datei downloaden und in den Kalender importieren.